首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   859篇
  免费   60篇
  国内免费   9篇
测绘学   53篇
大气科学   69篇
地球物理   213篇
地质学   286篇
海洋学   81篇
天文学   130篇
综合类   6篇
自然地理   90篇
  2023年   4篇
  2022年   6篇
  2021年   27篇
  2020年   12篇
  2019年   19篇
  2018年   34篇
  2017年   35篇
  2016年   49篇
  2015年   31篇
  2014年   28篇
  2013年   56篇
  2012年   42篇
  2011年   45篇
  2010年   43篇
  2009年   58篇
  2008年   44篇
  2007年   44篇
  2006年   37篇
  2005年   22篇
  2004年   42篇
  2003年   30篇
  2002年   21篇
  2001年   19篇
  2000年   28篇
  1999年   15篇
  1998年   12篇
  1997年   8篇
  1996年   11篇
  1995年   7篇
  1994年   3篇
  1993年   7篇
  1991年   8篇
  1990年   5篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1984年   6篇
  1983年   12篇
  1982年   7篇
  1981年   5篇
  1980年   3篇
  1979年   4篇
  1978年   4篇
  1977年   4篇
  1976年   4篇
  1975年   2篇
  1974年   5篇
  1973年   3篇
  1972年   2篇
  1967年   1篇
排序方式: 共有928条查询结果,搜索用时 18 毫秒
31.
32.
Tom Andersen  William L Griffin   《Lithos》2004,73(3-4):271-288
The Storgangen orebody is a concordantly layered, sill-like body of ilmenite-rich norite, intruding anorthosites of the Rogaland Intrusive Complex (RIC), SW Norway. 17 zircon grains were separated from ca. 5 kg of sand-size flotation waste collected from the on-site repository from ilmenite mining. These zircons were analysed for major and trace elements by electron microprobe, and for U–Pb and Lu–Hf isotopes by laser ablation microprobe plasma source mass spectrometry. Eight of the zircons define a well-constrained (MSWD=0.37) concordant population with an age of 949±7 Ma, which is significantly older than the 920–930 Ma ages previously reported for zircon inclusions in orthopyroxene megacrysts from the RIC. The remaining zircons, interpreted as inherited grains, show a range of 207Pb/206Pb ages up to 1407±14 Ma, with an upper intercept age at ca. 1520 Ma. The concordant zircons have similar trace element patterns, and a mean initial Hf isotope composition of 176Hf/177Hf949 Ma=0.28223±5 (Hf=+2±2). This is similar to the Hf-isotope composition of zircons in a range of post-tectonic Sveconorwegian granites from South Norway, and slightly more radiogenic than expected for mid-Proterozoic juvenile crust. The older, inherited zircons show Lu–Hf crustal residence ages in the range 1.85–2.04 Ga. One (undated) zircon plots well within the field of Hf isotope evolution of Paleoproterozoic rocks of the Baltic Shield. These findings indicate the presence of Paleoproterozoic components in the deep crust of the Rogaland area, but do not demonstrate that such rocks, or a Sveconorwegian mantle-derived component, contributed significantly to the petrogenesis of the RIC. If the parent magma was derived from a homogeneous, lower crustal mafic granulite source, the lower crustal protolith must be at least 1.5 Ga old, and it must have an elevated Rb/Sr ratio. This component would be indistinguishable in Sr, Nd and Hf isotopes from some intermediate mixtures between Sveconorwegian mantle and Paleoprotoerzoic felsic crust, but it cannot account for the initial 143Nd/144Nd of the most primitive, late Sveconorwegian granite in the region, without the addition of mantle-derived material.  相似文献   
33.
This paper reviews key characteristics of kimberlites on the Ekati property, NWT, Canada. To date 150 kimberlites have been discovered on the property, five of which are mined for diamonds. The kimberlites intrude Archean basement of the central Slave craton. Numerous Proterozoic diabase dykes intrude the area. The Precambrian rocks are overlain by Quaternary glacial sediments. No Phanerozoic rocks are present. However, mudstone xenoliths and disaggregated sediment within the kimberlites indicate that late-Cretaceous and Tertiary cover (likely <200 m) was present at the time of emplacement. The Ekati kimberlites range in age from 45 to 75 Ma. They are mostly small pipe-like bodies (surface area mostly <3 ha but up to 20 ha) that typically extend to projected depths of 400–600 m below current surface. Pipe morphologies are strongly controlled by joints and faults. The kimberlites consist primarily of variably bedded volcaniclastic kimberlite (VK). This is dominated by juvenile constituents (olivine and lesser kimberlitic ash) and variable amounts of exotic sediment (primarily mud), with minor amounts of xenolithic wall-rock material (generally <5%). Kimberlite types include: mud-rich resedimented VK (mRVK); olivine-rich VK (oVK); sedimentary kimberlite; primary VK (PVK); tuffisitic kimberlite (TK) and magmatic kimberlite (MK). The presence and arrangement of these rock types varies widely. The majority of bodies are dominated by oVK and mRVK, but PVK is prominent in the lower portions of certain kimberlites. TK is rare. MK occurs primarily as precursor dykes but, in a few cases, forms pipe-filling intrusions. The internal geology of the kimberlites ranges from simple single-phase pipes (RVK or MK), to complex bodies with multiple, distinct units of VK. The latter include pipes infilled with steep, irregular VK blocks/wedges and at least one case in which the pipe is occupied by well-defined sub-horizontal VK phases, including a unique, 100-m-thick graded sequence. The whole-rock compositions of VK samples suggest significant loss of kimberlitic fines during eruption followed by variable dilution by surface sediment and concurrent incorporation of kimberlitic ash. Diamond distribution within the kimberlites reflects the amount and nature of mantle material sampled by individual kimberlite phases, but is modified considerably by eruption and depositional processes. The characteristics of the Ekati kimberlites are consistent with a two-stage emplacement process: (1) explosive eruption/s causing vent clearing followed by formation of a significant tephra rim/cone of highly fragmented, olivine-enriched juvenile material with varying amounts of kimberlitic ash and surface sediments (predominantly mud); and (2) infilling of the vent by direct deposition from the eruption column and/or resedimentation of crater rim materials. The presence of less fragmented, juvenile-rich PVK in the lower portions of certain pipes and the intrusion of large volumes of MK to shallow levels in some bodies suggest emplacement of relatively volatile-depleted, less explosive kimberlite in the later stages of pipe formation and/or filling. Explosive devolatilisation of CO2-rich kimberlite magma is interpreted to have been the dominant eruption mechanism, but phreatomagmatism is thought to have played a role and, in certain cases, may have been dominant.  相似文献   
34.
Analyses of mineral inclusions, carbon isotopes, nitrogen contents and nitrogen aggregation states in 29 diamonds from two Buffalo Hills kimberlites in northern Alberta, Canada were conducted. From 25 inclusion bearing diamonds, the following paragenetic abundances were found: peridotitic (48%), eclogitic (32%), eclogitic/websteritic (8%), websteritic (4%), ultradeep? (4%) and unknown (4%). Diamonds containing mineral inclusions of ferropericlase, and mixed eclogitic-asthenospheric-websteritic and eclogitic-websteritic mineral associations suggests the possibility of diamond growth over a range of depths and in a variety of mantle environments (lithosphere, asthenosphere and possibly lower mantle).

Eclogitic diamonds have a broad range of C-isotopic composition (δ13C=−21‰ to −5‰). Peridotitic, websteritic and ultradeep diamonds have typical mantle C-isotope values (δ13C=−4.9‰ av.), except for two 13C-depleted peridotitic (δ13C=−11.8‰, −14.6‰) and one 13C-depleted websteritic diamond (δ13C=−11.9‰). Infrared spectra from 29 diamonds identified two diamond groups: 75% are nitrogen-free (Type II) or have fully aggregated nitrogen defects (Type IaB) with platelet degradation and low to moderate nitrogen contents (av. 330 ppm-N); 25% have lower nitrogen aggregation states and higher nitrogen contents (30% IaB; <1600 ppm-N).

The combined evidence suggests two generations of diamond growth. Type II and Type IaB diamonds with ultradeep, peridotitic, eclogitic and websteritic inclusions crystallised from eclogitic and peridotitic rocks while moving in a dynamic environment from the asthenosphere and possibly the lower mantle to the base of the lithosphere. Mechanisms for diamond movement through the mantle could be by mantle convection, or an ascending plume. The interaction of partial melts with eclogitic and peridotitic lithologies may have produced the intermediate websteritic inclusion compositions, and can explain diamonds of mixed parageneses, and the overlap in C-isotope values between parageneses. Strong deformation and extremely high nitrogen aggregation states in some diamonds may indicate high mantle storage temperatures and strain in the diamond growth environment. A second diamond group, with Type IaA–IaB nitrogen aggregation and peridotitic inclusions, crystallised at the base of the cratonic lithosphere. All diamonds were subsequently sampled by kimberlites and transported to the Earth's surface.  相似文献   

35.
Mantle xenoliths and xenocrysts were retrieved from three of the 88–86 Ma Buffalo Hills kimberlites (K6, K11, K14) for a reconnaissance study of the subcontinental lithospheric mantle (SCLM) beneath the Buffalo Head Terrane (Alberta, Canada). The xenoliths include spinel lherzolites, one garnet spinel lherzolite, garnet harzburgites, one sheared garnet lherzolite and pyroxenites. Pyroxenitic and wehrlitic garnet xenocrysts are derived primarily from the shallow mantle and lherzolitic garnet xenocrysts from the deep mantle. Harzburgite with Ca-saturated garnets is concentrated in a layer between 135–165 km depth. Garnet xenocrysts define a model conductive paleogeotherm corresponding to a heat flow of 38–39 mW/m2. The sheared garnet lherzolite lies on an inflection of this geotherm and may constrain the depth of the lithosphere–asthenosphere boundary (LAB) beneath this region to ca 180 km depth.

A loss of >20% partial melt is recorded by spinel lherzolites and up to 60% by the garnet harzburgites, which may be related to lithosphere formation. The mantle was subsequently modified during at least two metasomatic events. An older metasomatic event is evident in incompatible-element enrichments in homogeneous equilibrated garnet and clinopyroxene. Silicate melt metasomatism predominated in the deep lithosphere and led to enrichments in the HFSE with minor enrichments in LREE. Metasomatism by small-volume volatile-rich melts, such as carbonatite, appears to have been more important in the shallow lithosphere and led to enrichments in LREE with minor enrichments in HFSE. An intermediate metasomatic style, possibly a signature of volatile-rich silicate melts, is also recognised. These metasomatic styles may be related through modification of a single melt during progressive interaction with the mantle. This metasomatism is suggested to have occurred during Paleoproterozoic rifting of the Buffalo Head Terrane from the neighbouring Rae Province and may be responsible for the evolution of some samples toward unradiogenic Nd and Hf isotopic compositions.

Disturbed Re–Os isotope systematics, evident in implausible model ages, were obtained in situ for sulfides in several spinel lherzolites and suggest that many sulfides are secondary (metasomatic) or mixtures of primary and secondary sulfides. Sulfide in one peridotite has unradiogenic 187Os/188Os and gives a model age of 1.89±0.38 Ga. This age coincides with the inferred emplacement of mafic sheets in the crust and suggests that the melts parental to the intrusions interacted with the lithospheric mantle.

A younger metasomatic event is indicated by the occurrence of sulfide-rich melt patches, unequilibrated mineral compositions and overgrowths on spinel that are Ti-, Cr- and Fe-rich but Zn-poor. Subsequent cooling is recorded by fine exsolution lamellae in the pyroxenes and by arrested mineral reactions.

If the lithosphere beneath the Buffalo Head Terrane was formed in the Archaean, any unambiguous signatures of this ancient origin may have been obliterated during these multiple events.  相似文献   

36.
37.
Mineralogical and chemical investigations (<2μm clay separates) of shale samples from the Neogene-age Surma Group obtained from four wells (Habiganj-11, Shahbazpur-1, Titas-11, Titas-15) in the Bengal basin, Bangladesh, were carried out in order to reveal the clay mineral composition as reservoir exploration and exploitation requires a good understanding of the clay minerals. The samples were analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM) and X-Ray fluorescence spectrometry (XRF). Mineralogically, the sub-surface Surma Group shales comprise predominantly quartz, plagioclase, illite, chlorite, kaolinite, with lesser amounts of K-feldspar, dolomite and smectite, and minor to trace amounts of calcite, siderite and pyrite. The chemical composition of the <2 μm clay separates also suggests an illite and chlorite-rich composition. With increasing burial depth, the Surma Group shales are enriched in illite. The gradual decreasing of the smectite clays with depth and ultimate disappearance at greater depths (≥ 3000 m) may have been responsible for the presence of the diagenetic illite. Based on the mineralogical composition it is most likely that the illite-chlorite associations together with quartz and feldspar were predominantly detrital in origin and thus reflect the presence of a rapidly-rising source terrain not subjected to intense weathering.  相似文献   
38.
39.
40.
This paper numerically examines the bearing capacity and failure mechanism of a shallow strip foundation constructed above twin voids. The voids may refer to caves, caverns, underground aqueduct or tunnels due to water seepage, chemical reaction or deliberately excavated in soil deposit. The ability of numerical model to accurately predict the system behavior is evaluated by performing verification analyses on existing researches. Subsequently, a parametric study carried out to reveal the influence of size of footing/voids and their location (i.e. depth, spacing, eccentricity) on the bearing capacity of footing. To clarify the failure mechanism, the distribution of shear strain in the soil for different scenarios is assessed. The parametric study provided a new framework to determine the bearing capacity and the mode of failure for footings on voids. Based on the results, a criterion can be issued to avoid collapse of footing/voids regarding the shape, location and size of voids. The results can also be used to design construction of a footing on existing voids while the acquired failure mechanisms can be appointed to develop analytical solutions for this problem. Results demonstrated that a critical depth for voids and a critical distance between them exist where the influence on the ultimate bearing capacity of footing disappears.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号